Two Regimes of Turbulent Fragmentation and the Stellar Imf from Primordial to Present Day Star Formation
نویسندگان
چکیده
The Padoan and Nordlund model of the stellar initial mass function (IMF) is derived from low order statistics of supersonic turbulence, neglecting gravity (e.g. gravitational fragmentation, accretion and merging). In this work the predictions of that model are tested using the largest numerical experiments of supersonic hydrodynamic (HD) and magneto-hydrodynamic (MHD) turbulence to date (∼ 1000 computational zones) and three different codes (Enzo, Zeus and the Stagger Code). The model predicts a power law distribution for large masses, related to the turbulence energy power spectrum slope, and the shock jump conditions. This power law mass distribution is confirmed by the numerical experiments. The model also predicts a sharp difference between the HD and MHD regimes, which is recovered in the experiments as well, implying that the magnetic field, even below energy equipartition on the large scale, is a crucial component of the process of turbulent fragmentation. These results suggest that the stellar IMF of primordial stars may differ from that in later epochs of star formation, due to differences in both gas temperature and magnetic field strength. In particular, we find that the IMF of primordial stars born in turbulent clouds may be narrowly peaked around a mass of order 10 M⊙, as long as the column density of such clouds is not much in excess of 10 22 cm. Subject headings: ISM: kinematics and dynamics — stars: formation — turbulence
منابع مشابه
Formation of Stellar Clusters and the Importance of Thermodynamics for Fragmentation
We discuss results from numerical simulations of star cluster formation in the turbulent interstellar medium (ISM). The thermodynamic behavior of the star-forming gas plays a crucial role in fragmentation and determines the stellar mass function as well as the dynamic properties of the nascent stellar cluster. This holds for star formation in molecular clouds in the solar neighborhood as well a...
متن کاملThe Stellar IMF from Turbulent Fragmentation
The morphology and kinematics of molecular clouds (MCs) are best explained as the consequence of super–sonic turbulence. Super–sonic turbulence fragments MCs into dense sheets, filaments and cores and large low density “voids”, via the action of highly radiative shocks. We refer to this process as turbulent fragmentation. In this work we derive the mass distribution of dense cores due to turbul...
متن کاملGravitational Fragmentation in Turbulent Primordial Gas and the Initial Mass Function of Population Iii Stars
We report results from numerical simulations of star formation in the early universe that focus on the dynamical behavior of metal-free gas under different initial and environmental conditions. In particular we investigate the role of turbulence, which is thought to ubiquitously accompany the collapse of high-redshift halos. We distinguish between two main cases: the birth of Population III.1 s...
متن کاملComparing models for IMF variation across cosmological time in Milky Way-like galaxies
One of the key observations regarding the stellar initial mass function (IMF) is its nearuniversality in the Milky Way (MW), which provides a powerful way to constrain different star formation models that predict the IMF. However, those models are almost universally ‘cloud-scale’ or smaller – they take as input or simulate single molecular clouds (GMCs), clumps or cores, and predict the resulti...
متن کاملStellar Populations in the Central Galaxies of Fossil Groups
It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...
متن کامل